1. CHARGING A MOBILE PHONE WITH SMALL PV PANEL

Consider a small PV module to charge your mobile phone. The PV module has an active area of about $50 \mathrm{~cm}^{2}$ and an efficiency of 15%.

1. Check on your own mobile phone how much energy does it store.
2. Determine how many hours of peak power $\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right)$ does it take to fill it up.
3. If you took the phone (and the PV charger!) to a location where the average annual insolation is about 1900 $\mathrm{kWh} / \mathrm{m}^{2} /$ year, determine how often you could call home.

2. SELF-DEMAND IN PORTUGAL

Consider the Lei do autoconsumo in Portugal.

1. How much would a 200 Wp PV system produce in Portugal? [average insolation: $1.5 \mathrm{kWh} / \mathrm{Wp} /$ year]
2. Determine the maximum savings from such a PV system [lifetime: 30 years; price of grid electricity $15 \mathrm{c} € / \mathrm{kWh}$ with 2% annual increment].
3. Assuming typical installation costs [$2 € / \mathrm{Wp}]$, determine the payback time.
4. Discuss the costs and benefits of larger PV systems within this framework.

3. MODULE EFFICIENCY

Considering that the BOS \& installation cost of a PV system with an efficiency of 15% is of the order $200 € / \mathrm{m}^{2}$ determine:

1. The total cost of the $P V$ system per unit area, assuming that the module costs $1 € / \mathrm{Wp}$.
2. Imagine a new low cost module technology with a cost per unit area of the order of the price of glass ($20 € / \mathrm{m}^{2}$). What is the minimum efficiency for the new module in order to have a competitive cost?

4. LAND FOR ENERGY

How much land would Portugal need to supply all its electricity needs with PV? [assume: demand: 50TWh/year; 1.5kWh/Wp/year; 15\% efficiency].

